Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
AAPS J ; 26(3): 35, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514482

RESUMO

Over the past few years, nanoparticles have drawn particular attention in designing and developing drug delivery systems due to their distinctive advantages like improved pharmacokinetics, reduced toxicity, and specificity. Along with other successful nanosystems, silica nanoparticles (SNPs) have shown promising effects for therapeutic and diagnostic purposes. These nanoparticles are of great significance owing to their modifiable surface with various ligands, tunable particle size, and large surface area. The rate and extent of degradation and clearance of SNPs depend on factors such as size, shape, porosity, and surface modification, which directly lead to varying toxic mechanisms. Despite SNPs' enormous potential for clinical and pharmaceutical applications, safety concerns have hindered their translation into the clinic. This review discusses the biodistribution, toxicity, and clearance of SNPs and the formulation-related factors that ultimately influence clinical efficacy and safety for treatment. A holistic view of SNP safety will be beneficial for developing an enabling SNP-based drug product.


Assuntos
Nanopartículas , Dióxido de Silício , Distribuição Tecidual , Dióxido de Silício/toxicidade , Dióxido de Silício/farmacocinética , Dióxido de Silício/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Resultado do Tratamento , Portadores de Fármacos
2.
Acta Biomater ; 177: 444-455, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325709

RESUMO

Photodynamic therapy (PDT) is a clinically approved treatment for tumors, and it relies on the phototoxicity of photosensitizers by producing reactive oxygen species (ROS) to destroy cancer cells under light irradiation. However, such phototoxicity is a double-edged sword, which is also harmful to normal tissues. To manipulate phototoxicity and improve the therapy effect, herein we have proposed a dressing-undressing strategy for de-activating and re-activating therapy functions of photosensitizer nanoparticles. One kind of metal organic framework (PCN-224), which is composed of Zr(IV) cation and tetrakis (4-carboxyphenyl) porphyrin (TCPP), has been prepared as a model of photosensitizer, and it has size of ∼70 nm. These PCN-224 nanoparticles are subsequently coated with a mesoporous organic silica (MOS) shell containing tetrasulfide bonds (-S-S-S-S-), realizing the dressing of PCN-224. MOS shell has the thickness of ∼20 nm and thus can block 1O2 (diffusion distance: <10 nm), deactivating the phototoxicity and preventing the damage to skin and eyes. Furthermore, PCN-224@MOS can be used to load chemotherapy drug (DOX·HCl). When PCN-224@MOS-DOX are mixed with glutathione (GSH), MOS shell with -S-S-S-S- bonds can be reduced by GSH and then be decomposed, which results in the undressing and then confers the exposure of PCN-224 with good PDT function as well as the release of DOX. When PCN-224@MOS-DOX dispersion is injected into the mice and accumulated in the tumor, endogenous GSH also confers the undressing of PCN-224@MOS-DOX, realizing the in-situ activation of PDT and chemotherapy for tumor. Therefore, the present study not only demonstrates a general dressing-undressing strategy for manipulating phototoxicity of photosensitizers, but also provide some insights for precise therapy of tumors without side-effects. STATEMENT OF SIGNIFICANCE: Photosensitizers can generate reactive oxygen species (ROS) under light radiation to destroy cancer cells. However, this phototoxicity is a double-edged sword and also harmful to normal tissues such as the skin and eyes. To control phototoxicity and improve therapeutic efficacy, we prepared a PCN-224@MOS-DOX nanoplatform and proposed a dressing and undressing strategy to deactivate and reactivate the therapeutic function of the photosensitizer nanoparticles. The MOS shell can block the diffusion of 1O2, eliminate phototoxicity, and prevent damage to the skin and eyes. When injected into mice and accumulated in tumors, PCN-224@MOS-DOX dispersions are endowed with an endogenous GSH-driven undressing effect, achieving in situ activation of PDT and tumor chemotherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanopartículas/química , Oxigênio , Dióxido de Silício/uso terapêutico , Bandagens , Linhagem Celular Tumoral
3.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338418

RESUMO

Syndecan-1 (SDC1) modified lipid bilayer (LB)-coated mesoporous silica nanoparticles (MSN) to co-deliver gemcitabine (GEM) and honokiol (HNK) were prepared for the targeting treatment of pancreatic cancer. The encapsulation efficiencies of GEM and HNK in SDC1-LB-MSN-GEM/HNK were determined to be 60.3 ± 3.2% and 73.0 ± 1.1%. The targeting efficiency of SDC1-LB-MSN-GEM/HNK was investigated in BxPC-3 cells in vitro. The fluorescence intensity in the cells treated with SDC1-LB-MSN-Cou6 was 2-fold of LB-MSN-Cou6-treated cells, which was caused by SDC1/IGF1R-mediated endocytosis. As anticipated, its cytotoxicity was significantly increased. Furthermore, the mechanism was verified that SDC1-LB-MSN-HNK induced tumor cell apoptosis through the mitochondrial apoptosis pathway. Finally, the biodistribution, tumor growth inhibition, and preliminary safety studies were performed on BALB/c nude mice bearing BxPC-3 tumor models. The tumor growth inhibition index of SDC1-LB-MSN-GEM/HNK was 56.19%, which was 1.45-fold and 1.33-fold higher than that of the free GEM/HNK and LB-MSN-GEM/HNK treatment groups, respectively. As a result, SDC1-LB-MSN-GEM/HNK combined advantages of both GEM and HNK and simultaneously targeted and eliminated pancreatic cancerous and cancer-associated stromal cells. In summary, the present study demonstrated a new strategy of synergistic GEM and HNK to enhance the therapeutic effect of pancreatic cancer via the targeting depletion of tumor stroma.


Assuntos
Compostos Alílicos , Compostos de Bifenilo , Nanopartículas , Neoplasias Pancreáticas , Fenóis , Camundongos , Animais , Gencitabina , Bicamadas Lipídicas , Dióxido de Silício/uso terapêutico , Camundongos Nus , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico
4.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321393

RESUMO

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Nanosferas , Selênio , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Porosidade , Fator de Necrose Tumoral alfa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Proteínas de Junções Íntimas/metabolismo
5.
Nanoscale Horiz ; 9(2): 186-214, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38164973

RESUMO

Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/uso terapêutico , Medicina de Precisão , Microambiente Tumoral , Nanopartículas/uso terapêutico , Nanomedicina
6.
J Mater Chem B ; 12(5): 1344-1354, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230621

RESUMO

Most acute cardiovascular and cerebrovascular diseases are caused by atherosclerotic plaque rupture leading to blocked arteries. Targeted nanodelivery systems deliver imaging agents or drugs to target sites for diagnostic imaging or the treatment of various diseases, providing new insights for the detection and treatment of atherosclerosis. Based on the pathological characteristics of atherosclerosis, a hydrogen peroxide-sensitive bimodal probe PPIS@FC with integrated diagnosis and treatment function was designed. Bimodal probes Fe3O4@SiO2-CDs (FC) were prepared by coupling superparamagnetic iron oxide and carbon quantum dots synthesized with citric acid, and self-assembled with hydrogen peroxide stimulus-responsive amphiphilic block polymer PGMA-PEG modified with simvastatin (Sim) and target molecule ISO-1 to obtain drug-loaded micelles PGMA-PEG-ISO-1-Sim@FC (PPIS@FC). PPIS@FC could release Sim and FC in an H2O2-triggered manner, achieving the goal of releasing drugs using the special microenvironment at the plaque. At the same time, in vivo magnetic resonance and fluorescence imaging results proved that PPIS@FC possessed targeting ability, magnetic resonance imaging and fluorescence imaging effects. The results of the FeCl3 and ApoE-/- model showed that PPIS@FC had an excellent therapeutic effect and in vivo safety. Therefore, dual-modality imaging drug delivery systems with ROS response will become a promising strategy for the diagnosis and treatment of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , Dióxido de Silício/uso terapêutico , Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/tratamento farmacológico
7.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279301

RESUMO

Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral ß-amyloid (Aß) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aß were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aß-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aß (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.


Assuntos
Doença de Alzheimer , Hypericum , Humanos , Camundongos , Animais , Lactente , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Fitoterapia , Hypericum/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Dióxido de Silício/uso terapêutico , Peptídeos beta-Amiloides/toxicidade , Camundongos Transgênicos
8.
Int J Nanomedicine ; 18: 7677-7693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111846

RESUMO

Purpose: Glioblastoma is a highly aggressive brain tumor with universally poor outcomes. Recent progress in immune checkpoint inhibitors has led to increased interest in their application in glioblastoma. Nonetheless, the unique immune milieu in the brain has posed remarkable challenges to the efficacy of immunotherapy. We aimed to leverage the radiation-induced immunogenic cell death to overcome the immunosuppressive network in glioblastoma. Methods: We developed a novel approach using the gold-core silica-shell nanoparticles (Au@SiO2 NPs) in combination with low-dose radiation to enhance the therapeutic efficacy of the immune checkpoint inhibitor (atezolizumab) in brain tumors. The biocompatibility, immune cell recruitment, and antitumor ability of the combinatorial strategy were determined using in vitro assays and in vivo models. Results: Our approach successfully induced the migration of macrophages towards brain tumors and promoted cancer cell apoptosis. Subcutaneous tumor models demonstrated favorable safety profiles and significantly enhanced anticancer effects. In orthotopic brain tumor models, the multimodal therapy yielded substantial prognostic benefits over any individual modalities, achieving an impressive 40% survival rate. Conclusion: In summary, the combination of Au@SiO2 NPs and low-dose radiation holds the potential to improve the clinical efficacy of immune checkpoint inhibitors. The synergetic strategy modulates tumor microenvironments and enhances systemic antitumor immunity, paving a novel way for glioblastoma treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Dióxido de Silício/uso terapêutico , Glioblastoma/tratamento farmacológico , Ouro/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Biomaterials ; 303: 122366, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948854

RESUMO

Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.


Assuntos
Ácidos Nucleicos Livres , Nanopartículas , Osteoartrite , Humanos , Dióxido de Silício/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Condrócitos/metabolismo , Nanopartículas/química , Ácidos Nucleicos Livres/metabolismo , Ácidos Nucleicos Livres/farmacologia , Ácidos Nucleicos Livres/uso terapêutico
10.
ACS Appl Mater Interfaces ; 15(47): 54221-54233, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37962427

RESUMO

The redox-active metal ions, especially Cu2+, are highly correlated to Alzheimer's disease (AD) by causing metal ion-mediated oxidative stress and toxic metal-bound ß-amyloid (Aß) aggregates. Numerous pieces of evidence have revealed that the regulation of metal homeostasis could be an effective therapeutic strategy for AD. Herein, in virtue of the interaction of both amino-containing silane and ethylenediaminetetraacetic acid disodium salt for Cu2+, the silicon-carbon dots (SiCDs) are deliberately prepared using these two raw materials as the cocarbon source; meanwhile, to realize the local enrichment of SiCDs and further maximize the chelating ability to Cu2+, the SiCDs are feasibly loaded to the biocompatible mesoporous silica nanoparticles (mSiO2) with the interaction between residual silane groups on SiCDs and silanol groups of mSiO2. Thus-obtained nanocomposites (i.e., mSiO2@SiCDs) could serve as an efficient Cu2+ chelator with satisfactory metal selectivity and further modulate the enzymic activity of free Cu2+ and the Aß42-Cu2+ complex to alleviate the pathological oxidative stress with an anti-inflammatory effect. Besides, mSiO2@SiCDs show an inspiring inhibitory effect on Cu2+-mediated Aß aggregation and further protect the neural cells against the toxic Aß42-Cu2+ complex. Moreover, the transgenic Caenorhabditis elegans CL2120 assay demonstrates the protective efficacy of mSiO2@SiCDs on Cu2+-mediated Aß toxicity in vivo, indicating its potential for AD treatment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Silício/uso terapêutico , Silanos , Dióxido de Silício/uso terapêutico , Carbono/uso terapêutico , Cobre/farmacologia , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Metais , Quelantes/farmacologia
11.
Signal Transduct Target Ther ; 8(1): 435, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996406

RESUMO

Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Dióxido de Silício/química , Dióxido de Silício/uso terapêutico , Porosidade , Portadores de Fármacos/química , Nanopartículas/uso terapêutico , Nanopartículas/química
12.
Biomater Sci ; 11(20): 6894-6905, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650600

RESUMO

The application of hybrid nanocarriers is expected to play an active role in improving treatment of chemotherapy and phototherapy. Herein, a nanohybrid with a core of mesoporous silica nanorods and shell of folate-functionalized zeolite imidazole framework (ZIF-8/FA) was synthesized via polydopamine (PDA)-mediated integration. A chemotherapeutic drug (DOX), bubble generator (NH4HCO3, ABC), and photosensitive agent (ICG) were simultaneously loaded into the delivery system to construct smart ZIF-8/FA-coated mesoporous silica nanorods (IDa-PRMSs@ZF). We found that ICG endowed the designed delivery system with a moderate photothermal conversion efficiency of 26.06% and the capacity to release 1O2. The produced hyperthermia caused ABC to decompose and further generate carbon dioxide bubbles, thereby facilitating DOX release, sequentially. Importantly, the underlying mechanism was also investigated using mathematical kinetic modeling. The tumor inhibition rate of IDa-PRMSs@ZF under NIR irradiation reached 83.8%. This study provides a promising strategy based on rod-shaped nanohybrids for effective combination antitumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Oxigênio Singlete , Dióxido de Carbono , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Dióxido de Silício/uso terapêutico , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
13.
J Colloid Interface Sci ; 649: 1014-1022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392681

RESUMO

Targeted delivery along with controlled drug release is considered crucial in development of a drug delivery system (DDS) for efficient cancer treatment. In this paper, we present a strategy to obtain such a DDS by utilizing disulfide-incorporated mesoporous organosilica nanoparticles (MONs), which were engineered to minimize the surface interactions with proteins for better targeting and therapeutic performance. That is, after MONs were loaded with a chemodrug doxorubicin (DOX) through the inner pores, their outer surface was treated for conjugation to the glutathione-S-transferase (GST)-fused cell-specific affibody (Afb) (GST-Afb). These particles exhibited prompt responsivity to the SS bond-dissociating glutathione (GSH), which resulted in considerable degradation of the initial particle morphology and DOX release. As the protein adsorption to the MON surface appeared largely reduced, their targeting ability with GSH-stimulated therapeutic activities was demonstrated in vitro by employing two kinds of the GST-Afb protein, which target human cancer cells with the surface membrane receptor, HER2 or EGFR. Compared with unmodified control particles, the presented results show that our system can significantly enhance cancer-therapeutic outcomes of the loaded drug, offering a promising way of designing a more efficacious DDS.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Doxorrubicina/uso terapêutico , Glutationa/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Dióxido de Silício/uso terapêutico , Porosidade , Liberação Controlada de Fármacos
14.
J Colloid Interface Sci ; 650(Pt A): 67-80, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393769

RESUMO

Due to the complexity of tumors, multimodal therapy for them has always been of concern to researchers. How to design a multifunctional drug nanoplatform with cascade effect and capable of responding to specific stimuli in the tumor microenvironment is the key to achieve efficient multimodal synergistic therapy of cancer. Here, we prepare a kind of GNRs@SiO2@PDA-CuO2-l-Arg (GSPRs-CL) nanomotors for systematic treatment of tumor. First, under near-infrared (NIR) irradiation, GSPRs-CL can generate heat and exhibit excellent photothermal therapy effect. Then under acidic conditions, CuO2 can be decomposed to release Cu2+ and generate H2O2, which not only complemented the limited endogenous H2O2 in cells, but also further triggered Fenton-like reaction, converting H2O2 into •OH to kill cancer cells, thereby achieving chemodynamic therapy. Furthermore, both endogenous and exogenous H2O2 can release nitric oxide (NO) in response to the occurrence of l-Arg of nanomotors to enhance gas therapy. In addition, as a dual-mode drive, NIR laser and NO can promote the penetration ability of nanomotors at tumor sites. The experimental results in vivo show that the drug nanoplatform had good biosafety and significant tumor killing effect triggered by NIR light and acidic conditions of tumor. It provide a promising strategy for the development of advanced drug nanoplatform for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Dióxido de Silício/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Linhagem Celular Tumoral , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
Int J Nanomedicine ; 18: 3623-3639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427365

RESUMO

Purpose: Although the combined photo-thermal (PTT) and photodynamic therapy (PDT) of tumors have demonstrated promise as effective cancer therapy, the hypoxic and insufficient H2O2 supply of tumors seriously limits the efficacy of PDT, and the acidic environment reduces the catalytic activity of nanomaterial in the tumor microenvironment. To develop a platform for efficiently addressing these challenges, we constructed a nanomaterial of Aptamer@dox/GOD-MnO2-SiO2@HGNs-Fc@Ce6 (AMS) for combination tumor therapy. The treatment effects of AMS were evaluated both in vitro and in vivo. Methods: In this work, Ce6 and hemin were loaded on graphene (GO) through π-π conjugation, and Fc was connected to GO via amide bond. The HGNs-Fc@Ce6 was loaded into SiO2, and coated with dopamine. Then, MnO2 was modified on the SiO2. Finally, AS1411-aptamer@dox and GOD were fixed to gain AMS. We characterized the morphology, size, and zeta potential of AMS. The oxygen and reactive oxygen species (ROS) production properties of AMS were analyzed. The cytotoxicity of AMS was detected by MTT and calcein-AM/PI assays. The apoptosis of AMS to a tumor cell was estimated with a JC-1 probe, and the ROS level was detected with a 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe. The anticancer efficacy in vivo was analyzed by the changes in the tumor size in different treatment groups. Results: AMS was targeted to the tumor cell and released doxorubicin. It decomposed glucose to produce H2O2 in the GOD-mediated reaction. The generated sufficient H2O2 was catalyzed by MnO2 and HGNs-Fc@Ce6 to produce O2 and free radicals (•OH), respectively. The increased oxygen content improved the hypoxic environment of the tumor and effectively reduced the resistance to PDT. The generated •OH enhanced the ROS treatment. Moreover, AMS depicted a good photo-thermal effect. Conclusion: The results revealed that AMS had an excellent enhanced therapy effect by combining synergistic PTT and PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Dióxido de Silício/uso terapêutico , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Porosidade , Compostos de Manganês/química , Óxidos/química , Oxigênio , Neoplasias/tratamento farmacológico , Doxorrubicina/uso terapêutico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176040

RESUMO

Silicosis, characterized by irreversible pulmonary fibrosis, remains a major global public health problem. Nowadays, cumulative studies are focusing on elucidating the pathogenesis of silicosis in order to identify preventive or therapeutic antifibrotic agents. However, the existing research on the mechanism of silica-dust-induced pulmonary fibrosis is only the tip of the iceberg and lags far behind clinical needs. Idiopathic pulmonary fibrosis (IPF), as a pulmonary fibrosis disease, also has the same problem. In this study, we examined the relationship between silicosis and IPF from the perspective of their pathogenesis and fibrotic characteristics, further discussing current drug research and limitations of clinical application in silicosis. Overall, this review provided novel insights for clinical treatment of silicosis with the hope of bridging the gap between research and practice in silicosis.


Assuntos
Fibrose Pulmonar Idiopática , Pneumopatias , Silicose , Humanos , Silicose/tratamento farmacológico , Silicose/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/patologia , Fibrose , Dióxido de Silício/uso terapêutico
17.
Evid Based Dent ; 24(1): 41-42, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36882497

RESUMO

OBJECTIVE: To compare the effectiveness of hydrophilic resin-based versus hydrophobic resin-based and glass-ionomer pit and fissure sealants. METHODS: The review was registered with Joanna Briggs Institute and followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, Google Scholar, Virtual Health Library, and Cochrane Central Register of Controlled Trials were searched from 2009-2019 using appropriate keywords. We included randomized controlled trials and randomized split-mouth trials conducted among 6-13-year-old children. The quality of included trials was assessed using modified Jadad criteria and risk of bias using guidelines specified by Cochrane. GRADE (Grading of Recommendations Assessment, Development, and Evaluation) guidelines were used to assess the overall quality of studies. We used the random-effects model for meta-analysis. Relative risk (RR) and confidence intervals (CI) were calculated & heterogeneity was tested using I² statistic. RESULTS: Six randomized clinical trials and five split-mouth trials met the inclusion criteria. The outlier augmenting the heterogeneity was omitted. Based on very-low to low-quality evidence, loss of hydrophilic resin-based sealants was less likely as compared to glass-ionomer fissure sealants (4 trials at 6 months; RR = 0.59; CI = 0.40-0.86), while it was similar or slightly lower than hydrophobic resin-based sealants (6 trials at 6 months; RR = 0.96; CI = 0.89-1.03); (6 trials at 12 months; RR = 0.79; CI = 0.70-0.89); (2 trials at 18 months; RR = 0.77; CI = 0.48-0.25). CONCLUSION: This study revealed that retention of hydrophilic resin-based sealants is better than glass ionomer sealants but similar to hydrophobic resin-based sealants. However, higher-quality evidence is necessary to underpin the outcomes.


Assuntos
Cariostáticos , Cárie Dentária , Criança , Humanos , Adolescente , Cariostáticos/uso terapêutico , Cárie Dentária/prevenção & controle , Resinas Acrílicas/uso terapêutico , Dióxido de Silício/uso terapêutico , Selantes de Fossas e Fissuras/uso terapêutico
18.
ACS Appl Bio Mater ; 6(3): 1213-1220, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36786440

RESUMO

Acute kidney injury (AKI) is a common and serious disease with high mortality and morbidity, and the persistent inflammatory environment brought about by AKI promotes its deterioration into chronic kidney disease (CKD). An efficient and timely targeted drug delivery to the renal tubules is crucial for AKI treatment. Here, we prepared silica cross-linked micelles (SCLMs) with different sizes and studied their targeting ability to the injured kidney. It is found that the SCLMs with a size of 13 nm could rapidly accumulate and remain in the damaged kidney. Immunofluorescence results confirmed that SCLMs are selectively located in the damaged tubular cells but cannot be found in healthy renal tissue. Therefore, fluorescent dye-labeled SCLMs were used for the imaging of the injured kidney, which could reflect the status of the kidney injury. Furthermore, atorvastatin, an antioxidative and anti-inflammatory drug, was loaded in SCLMs as the therapeutic agents for the treatment of ischemia/reperfusion-induced AKI and CKD. Renal function indexes, such as tubular necrosis, collagen deposition, and inflammation, were effectively improved after the treatment.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Micelas , Medicina de Precisão , Dióxido de Silício/uso terapêutico , Rim/diagnóstico por imagem , Rim/fisiologia , Injúria Renal Aguda/diagnóstico por imagem , Insuficiência Renal Crônica/diagnóstico por imagem
19.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768363

RESUMO

Breast cancer is one of the most common cancers in women. Silica nanoparticles (SiNPs) belong to the group of often-used nanoparticles in biomedical applications. The mechanisms of the cytotoxicity, apoptosis, and oxidative stress induced by the 5-15 nm SiNPs still remain unclear. The aim of the study was to evaluate the anti-cancer effect and mechanism of action of SiNPs in breast cancer cell lines. The breast cancer MDA-MB-231 and ZR-75-1 cell lines were analyzed using MTT assay, flow cytometry, and spectrophotometric methods. In this paper, we presented findings about the cytotoxicity, apoptosis, and oxidative stress in both breast cancer cell lines. We indicated that 5-15 nm SiNPs induced dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cells. Moreover, we demonstrated that the process of apoptosis in the studied cell lines was associated with a decrease in the mitochondrial membrane potential (ΔΨm) and an increase in the activity of caspase-9 and caspase-3. Based on the obtained results, 5-15 nm SiNPs are able to induce the mitochondrial apoptosis pathway. Analyzed nanoparticles have also been found to cause an increase in selected oxidative stress parameters in both breast cancer cell lines. The presented study provides an explanation of the possible mechanisms of 5-15 nm SiNPs action in breast cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas , Dióxido de Silício , Feminino , Humanos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Nanopartículas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos
20.
Antiviral Res ; 210: 105488, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566118

RESUMO

In the past decade, interest in nanoparticles for clinical indications has been steadily gaining traction. Most recently, Lipid Nanoparticles (LNP) have been used successfully to construct the SARS-CoV-2 mRNA vaccines for rapid pandemic response. Similarly, silica is another nanomaterial which holds much potential to create nanomedicines against pathogens of interest. One major advantage of silica-based nanoparticles is its crystalline and highly ordered structure, which can be specifically tuned to achieve the desired properties needed for clinical applications. Increasingly, clinical research has shown the potential of silica nanoparticles not only as an antiviral, but also its ability as a delivery system for antiviral small molecules and vaccines against viruses. Silica has an excellent biosafety profile and has been tested in several early phase clinical trials since 2012, demonstrating good tolerability and minimal reported side effects. In this review, we discuss the clinical development of silica nanoparticles to date and identify the gaps and potential pitfalls in its path to clinical translation.


Assuntos
COVID-19 , Nanopartículas , Vírus , Humanos , Dióxido de Silício/química , Dióxido de Silício/uso terapêutico , SARS-CoV-2 , Vírus/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...